Pooled Standard Deviation

Formulas and examples for the pooled standard deviation of two data series

The Pooled Standard Deviation is a weighted average of standard deviations for two or more groups. The individual standard deviations are averaged, with more “weight” given to larger sample sizes.


Pooled standard deviation formulas


\(\displaystyle SD_p= \sqrt{\frac{(n-1)SD_x^2+(m-1)SD_y^2}{n+m-2}} \)

Calculating the standard deviation of a sample

\(\displaystyle s=\sqrt{ \frac{1}{n-1} \sum^n_{i=1} (x_i-\overline{x})^2} \)

\(s^2\) Standard deviation
\(n\) Number of data points
\(x_i\) Single data point
\(\overline{x}\) Mean of the sample

Example

data set \( \displaystyle x= 3, 5, 7, 8 \)
data set \( \displaystyle y= 10, 16, 22, 27 \)
mean \( \displaystyle x= \frac{3+ 5+ 7+ 8}{4} =5.75\)

mean \( \displaystyle y= \frac{10+ 16+ 22+ 27}{4} =18.75\)
\( \displaystyle SD_x=\sqrt{\frac{1}{4-1}\cdot((3-5.75)^2+(5-5.75)^2+(7-5.75)^2+(8-5.75)^2)}\)

\( \displaystyle SD_x=\sqrt{\frac{1}{3}\cdot(7.5625+0.5625+1.5625+5.0625)}\)

\( \displaystyle SD_x=\sqrt{\frac{1}{3}\cdot 14.75} =\sqrt{4.9167}=\color{blue}{2.217}\)
\( \displaystyle SD_y=\sqrt{\frac{1}{4-1}\cdot((10-18.75)^2+(16-18.75)^2+(22-18.75)^2+(27-18.75)^2)}\)

\( \displaystyle SD_y=\sqrt{\frac{1}{3}\cdot(76.5625+7.5625+10.5625+68.0625)}\)

\( \displaystyle SD_y=\sqrt{\frac{1}{3}\cdot 162.75} =\sqrt{54.25} =\color{blue}{7.3655}\)
\( \displaystyle SD_p= \sqrt{\frac{(4-1)\cdot 2.217^2 +(4-1)\cdot 7.37^2}{4+4-2}} \)

\( \displaystyle SD_p= \sqrt{\frac{3\cdot 4.9167 +3\cdot 54.25}{6}} \)

\( \displaystyle SD_p= \sqrt{\frac{14.75 +162.75}{6}} =\sqrt{29.583} =\color{blue}{5.44}\)

Calculate pooled standard deviation online →



More Statistics Tutorials

Arithmetic Mean (Average)
Covariance
Five Number
Median
Empirical Distribution
Geometric Mean
Pooled Standard Deviation
Pooled Variance
Harmonic Mean
Contraharmonic Mean