Complex Conjugate of a Number

Compute the complex conjugate by changing the sign of the imaginary part

Conjugate Calculator

Complex Conjugate

The complex conjugate \(\overline{z}\) is obtained by changing the sign of the imaginary part. Geometrically this corresponds to a reflection across the real axis.

Complex number z = a + bi
+
i
Calculation Result
\(\overline{z}\) =

Conjugate - Properties

Definition
\[\text{If } z = a + bi \text{, then } \overline{z} = a - bi\]

Only the sign of the imaginary part changes!

Operation

Sign change

Imaginary part only
Geometry

Reflection

Across the real axis
Product
\[z \cdot \overline{z} = |z|^2\]

The product is always real!

Important Properties
  • \(\overline{\overline{z}} = z\) (Double conjugation)
  • \(z + \overline{z} = 2\text{Re}(z)\) (Real part)
  • \(z - \overline{z} = 2i\text{Im}(z)\) (Imaginary part)
  • \(|z| = |\overline{z}|\) (Same magnitude)
Algebraic Rules
  • \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\)
  • \(\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}\)
  • \(\overline{z_1 / z_2} = \overline{z_1} / \overline{z_2}\)
  • \(\overline{z^n} = (\overline{z})^n\)


Definition of the Complex Conjugate

Every complex number has a complex conjugate obtained by changing the sign of the imaginary part. It is denoted by \(\overline{z}\).

Notation

For \(z = a + bi\):
\[\overline{z} = a - bi\] Alternative notations: \(z^*\), \(\text{conj}(z)\)

Geometric Meaning

Reflection across the real axis:
Real part stays the same
Imaginary part changes sign

Examples and Calculations

Example 1: Simple Conjugation

Given: \(z = 5 + 3i\)

Conjugate: \(\overline{z} = 5 - 3i\)

Real part 5 remains, imaginary part changes from +3 to -3

Example 2: Negative Imaginary Part

Given: \(z = 3 - 4i\)

Conjugate: \(\overline{z} = 3 + 4i\)

-4i becomes +4i

Example 3: Pure Real Number

Given: \(z = 7 + 0i\)

Conjugate: \(\overline{z} = 7 - 0i = 7\)

Real numbers are self-conjugate

Example 4: Pure Imaginary Number

Given: \(z = 0 + 6i\)

Conjugate: \(\overline{z} = 0 - 6i = -6i\)

Sign is reversed

Example 5: Product z·z̄

For z = 5 + 3i:

\(z \cdot \overline{z} = (5+3i)(5-3i)\)

\(= 25 - 15i + 15i - 9i^2\)

\(= 25 - 9(-1) = 25 + 9 = 34\)

Result: reelle Zahl!

Verification

Alternatively: \(|z|^2 = 5^2 + 3^2 = 25 + 9 = 34\) ✓
The formula \(z \cdot \overline{z} = |z|^2\) always holds!

Applications of the Complex Conjugate

1. Division of complex numbers
Application:
\[\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}\]

By multiplying numerator and denominator with \(\overline{z_2}\) the denominator becomes real!

2. Magnitude calculation
Formula:
\[|z| = \sqrt{z \cdot \overline{z}}\]

Alternative to formula \(|z| = \sqrt{a^2 + b^2}\)

3. Extracting real and imaginary parts
Formulas:
\[\text{Re}(z) = \frac{z + \overline{z}}{2}\] \[\text{Im}(z) = \frac{z - \overline{z}}{2i}\]
4. Quadratic equations
Property:
If \(z\) is a solution, then \(\overline{z}\) is also a solution for real coefficients.

Complex solutions always occur in pairs!

5. Electrical impedance
Physics:
For complex impedance \(Z\) the conjugate \(\overline{Z}\) corresponds to the impedance for negative frequencies.

Important for power calculations: \(P = U \cdot \overline{I}\)

6. Signal processing
Fourier transform:
The spectrum of real signals is Hermitian:
\(F(-\omega) = \overline{F(\omega)}\)

Complex Conjugates - Detailed Description

Geometric Interpretation

In the Gaussian number plane conjugation corresponds to a reflection across the real axis.

Visualization:
• Point \(z = a + bi\) lies above the real axis (when b > 0)
• Point \(\overline{z} = a - bi\) lies symmetrically below
• Both points have the same distance from the origin
• The real axis is the axis of symmetry

Important Property

The product of a number with its conjugate is always real and non-negative (or zero):

\[z \cdot \overline{z} = (a+bi)(a-bi) = a^2 + b^2 = |z|^2\]

This is the square of the magnitude!

Algebraic rules with conjugation

Conjugation is compatible with basic arithmetic operations:

Linearity and multiplicativity:
• \(\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\) (Addition)
• \(\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}\) (Subtraction)
• \(\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}\) (Multiplication)
• \(\overline{z_1 / z_2} = \overline{z_1} / \overline{z_2}\) (Division)

Involutive property

Conjugation is involutive, i.e. applying it twice returns the original number:

\[\overline{\overline{z}} = z\]

Two reflections = identity

Special cases

  • Real numbers: \(\overline{a} = a\) (self-conjugate)
  • Imaginary numbers: \(\overline{bi} = -bi\) (sign change)
  • Zero: \(\overline{0} = 0\)
  • Imaginary unit: \(\overline{i} = -i\)
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye