Hyperbolic Cosine (cosh) for Complex Numbers
Calculation of cosh(z) - hyperbolic function in the complex plane
Cosh Calculator
Hyperbolic Cosine
The hyperbolic cosine cosh(z) of a complex number z = x + yi combines hyperbolic and trigonometric functions. It grows exponentially and is closely related to the exponential function: \(\cosh(z) = \frac{e^z + e^{-z}}{2}\)
Cosh - Properties
Formula for Complex Numbers
With z = x + yi
Exponential Representation
Average of exponential functions
Important Properties
- Even function: cosh(-z) = cosh(z)
- \(\cosh^2(z) - \sinh^2(z) = 1\)
- Minimum: cosh(0) = 1
- Grows exponentially for |z| → ∞
Relations
- \(\cosh(iz) = \cos(z)\)
- \(\cosh(2z) = \cosh^2(z) + \sinh^2(z)\)
- \(\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w\)
- \(\frac{d}{dz}\cosh(z) = \sinh(z)\)
Formulas for Hyperbolic Cosine of Complex Numbers
The hyperbolic cosine cosh(z) of a complex number z = x + yi combines hyperbolic functions (cosh, sinh) with trigonometric functions (cos, sin).
Cartesian Form
Real part: \(\cosh(x)\cos(y)\)
Imaginary part: \(\sinh(x)\sin(y)\)
Exponential Form
Average of exponential functions
Step-by-Step Example
Calculation: cosh(3 + 5i)
Step 1: Apply formula
z = 3 + 5i
x = 3 (real part)
y = 5 (imaginary part)
Step 2: Calculate real part
\(\text{Re} = \cosh(3) \cdot \cos(5)\)
\(= (10.0677) \cdot (0.28366)\)
\(\approx 2.856\)
Step 3: Calculate imaginary part
\(\text{Im} = \sinh(3) \cdot \sin(5)\)
\(= (10.0179) \cdot (-0.95892)\)
\(\approx -9.606\)
Step 4: Result
\(\cosh(3 + 5i) = \text{Re} + i\text{Im}\)
\(\approx 2.856 - 9.606i\)
Observation
The magnitude \(|\cosh(3 + 5i)| \approx 10.02\) is significantly larger than 1. The hyperbolic cosine grows exponentially with the real part x.
More Examples
Example 1: cosh(0)
z = 0
\(\cosh(0) = \frac{e^0 + e^{-0}}{2}\)
\(= \frac{1 + 1}{2} = 1\)
Example 2: cosh(1)
z = 1 (real)
\(\cosh(1) = \frac{e + e^{-1}}{2}\)
\(\approx 1.543\)
Example 3: cosh(i)
z = i (purely imaginary)
\(\cosh(i) = \cos(1)\)
\(\approx 0.540\)
Example 4: cosh(πi)
z = πi
\(\cosh(\pi i) = \cos(\pi)\)
\(= -1\)
Example 5: cosh(2 + i)
z = 2 + i
\(\text{Re} = \cosh(2)\cos(1) \approx 2.033\)
\(\text{Im} = \sinh(2)\sin(1) \approx 3.166\)
\(\approx 2.033 + 3.166i\)
Example 6: cosh(-2)
z = -2 (real, negative)
\(\cosh(-2) = \cosh(2)\) (even!)
\(\approx 3.762\)
Hyperbolic Cosine - Detailed Description
Definition
The hyperbolic cosine is one of the hyperbolic functions, analogous to the trigonometric cosine.
\[\cosh(z) = \frac{e^z + e^{-z}}{2}\]
For real numbers:
\[\cosh(x) = \frac{e^x + e^{-x}}{2}\]
Range: [1, ∞)
Minimum at x = 0: cosh(0) = 1
For Complex Numbers
Calculation with z = x + yi:
• Real part: \(\cosh(x)\cos(y)\)
• Imaginary part: \(\sinh(x)\sin(y)\)
• Grows exponentially with |Re(z)|
Important Properties
- Even function: \(\cosh(-z) = \cosh(z)\)
- Hyperbolic identity: \(\cosh^2(z) - \sinh^2(z) = 1\)
- Minimum: cosh(0) = 1
- Derivative: \(\frac{d}{dz}\cosh(z) = \sinh(z)\)
Addition Formulas
\[\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w\]
Double argument:
\[\cosh(2z) = \cosh^2(z) + \sinh^2(z)\]
\[= 2\cosh^2(z) - 1 = 2\sinh^2(z) + 1\]
Relation to Trigonometric Functions
• \(\cosh(iz) = \cos(z)\) (important connection!)
• \(\cos(iz) = \cosh(z)\) (inverse)
• \(e^z = \cosh(z) + \sinh(z)\)
• \(e^{-z} = \cosh(z) - \sinh(z)\)
Behavior and Growth
Exponential Growth
For large |x|:
The hyperbolic cosine grows exponentially!
e.g.: cosh(5) ≈ 74.2, cosh(10) ≈ 11013.2
Minimum Point
For real numbers, cosh has a minimum:
For all x ∈ ℝ: cosh(x) ≥ 1
Applications
Mathematics
- Hyperbolic geometry
- Catenary (rope, chain)
- Differential equations
- Integral calculus
Physics
- Relativity theory
- Heat equation
- Wave equations
- Electromagnetism
Engineering
- Bridge construction (suspension bridges)
- Structural mechanics
- Signal processing
- Control engineering
The Catenary
The most famous application of the hyperbolic cosine is the catenary (also called catenoid):
This curve describes the shape of a freely hanging chain or rope under its own weight. It is optimal for suspension bridges and arches, as it distributes tension evenly.
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •