Hyperbolic Cosine (cosh) for Complex Numbers

Calculation of cosh(z) - hyperbolic function in the complex plane

Cosh Calculator

Hyperbolic Cosine

The hyperbolic cosine cosh(z) of a complex number z = x + yi combines hyperbolic and trigonometric functions. It grows exponentially and is closely related to the exponential function: \(\cosh(z) = \frac{e^z + e^{-z}}{2}\)

Argument z = x + yi
+
i
Calculation Result
cosh(z) =
cosh(z) grows exponentially for large |Re(z)| and can take very large values!

Cosh - Properties

Formula for Complex Numbers
\[\cosh(z) = \cosh(x)\cos(y) + i\sinh(x)\sin(y)\]

With z = x + yi

Exponential Representation
\[\cosh(z) = \frac{e^z + e^{-z}}{2}\]

Average of exponential functions

Even function cosh(-z) = cosh(z)
Minimum cosh(0) = 1
Important Properties
  • Even function: cosh(-z) = cosh(z)
  • \(\cosh^2(z) - \sinh^2(z) = 1\)
  • Minimum: cosh(0) = 1
  • Grows exponentially for |z| → ∞
Relations
  • \(\cosh(iz) = \cos(z)\)
  • \(\cosh(2z) = \cosh^2(z) + \sinh^2(z)\)
  • \(\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w\)
  • \(\frac{d}{dz}\cosh(z) = \sinh(z)\)

Formulas for Hyperbolic Cosine of Complex Numbers

The hyperbolic cosine cosh(z) of a complex number z = x + yi combines hyperbolic functions (cosh, sinh) with trigonometric functions (cos, sin).

Cartesian Form
\[\cosh(x + yi) = \cosh(x)\cos(y) + i\sinh(x)\sin(y)\]

Real part: \(\cosh(x)\cos(y)\)
Imaginary part: \(\sinh(x)\sin(y)\)

Exponential Form
\[\cosh(z) = \frac{e^z + e^{-z}}{2}\]

Average of exponential functions

Step-by-Step Example

Calculation: cosh(3 + 5i)
Step 1: Apply formula

z = 3 + 5i

x = 3 (real part)

y = 5 (imaginary part)

Step 2: Calculate real part

\(\text{Re} = \cosh(3) \cdot \cos(5)\)

\(= (10.0677) \cdot (0.28366)\)

\(\approx 2.856\)

Step 3: Calculate imaginary part

\(\text{Im} = \sinh(3) \cdot \sin(5)\)

\(= (10.0179) \cdot (-0.95892)\)

\(\approx -9.606\)

Step 4: Result

\(\cosh(3 + 5i) = \text{Re} + i\text{Im}\)

\(\approx 2.856 - 9.606i\)

Observation

The magnitude \(|\cosh(3 + 5i)| \approx 10.02\) is significantly larger than 1. The hyperbolic cosine grows exponentially with the real part x.

More Examples

Example 1: cosh(0)

z = 0

\(\cosh(0) = \frac{e^0 + e^{-0}}{2}\)

\(= \frac{1 + 1}{2} = 1\)

Example 2: cosh(1)

z = 1 (real)

\(\cosh(1) = \frac{e + e^{-1}}{2}\)

\(\approx 1.543\)

Example 3: cosh(i)

z = i (purely imaginary)

\(\cosh(i) = \cos(1)\)

\(\approx 0.540\)

Example 4: cosh(πi)

z = πi

\(\cosh(\pi i) = \cos(\pi)\)

\(= -1\)

Example 5: cosh(2 + i)

z = 2 + i

\(\text{Re} = \cosh(2)\cos(1) \approx 2.033\)
\(\text{Im} = \sinh(2)\sin(1) \approx 3.166\)

\(\approx 2.033 + 3.166i\)

Example 6: cosh(-2)

z = -2 (real, negative)

\(\cosh(-2) = \cosh(2)\) (even!)

\(\approx 3.762\)

Hyperbolic Cosine - Detailed Description

Definition

The hyperbolic cosine is one of the hyperbolic functions, analogous to the trigonometric cosine.

Exponential representation:
\[\cosh(z) = \frac{e^z + e^{-z}}{2}\]

For real numbers:
\[\cosh(x) = \frac{e^x + e^{-x}}{2}\]
Range: [1, ∞)
Minimum at x = 0: cosh(0) = 1

For Complex Numbers

Calculation with z = x + yi:

\[\cosh(z) = \cosh(x)\cos(y) + i\sinh(x)\sin(y)\]

• Real part: \(\cosh(x)\cos(y)\)
• Imaginary part: \(\sinh(x)\sin(y)\)
• Grows exponentially with |Re(z)|

Important Properties

  • Even function: \(\cosh(-z) = \cosh(z)\)
  • Hyperbolic identity: \(\cosh^2(z) - \sinh^2(z) = 1\)
  • Minimum: cosh(0) = 1
  • Derivative: \(\frac{d}{dz}\cosh(z) = \sinh(z)\)

Addition Formulas

Sum formula:
\[\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w\]
Double argument:
\[\cosh(2z) = \cosh^2(z) + \sinh^2(z)\]
\[= 2\cosh^2(z) - 1 = 2\sinh^2(z) + 1\]

Relation to Trigonometric Functions

• \(\cosh(iz) = \cos(z)\) (important connection!)
• \(\cos(iz) = \cosh(z)\) (inverse)
• \(e^z = \cosh(z) + \sinh(z)\)
• \(e^{-z} = \cosh(z) - \sinh(z)\)

Behavior and Growth

Exponential Growth

For large |x|:

\[\cosh(x) \approx \frac{e^{|x|}}{2}\]

The hyperbolic cosine grows exponentially!
e.g.: cosh(5) ≈ 74.2, cosh(10) ≈ 11013.2

Minimum Point

For real numbers, cosh has a minimum:

\[\min_{x \in \mathbb{R}} \cosh(x) = \cosh(0) = 1\]

For all x ∈ ℝ: cosh(x) ≥ 1

Applications

Mathematics
  • Hyperbolic geometry
  • Catenary (rope, chain)
  • Differential equations
  • Integral calculus
Physics
  • Relativity theory
  • Heat equation
  • Wave equations
  • Electromagnetism
Engineering
  • Bridge construction (suspension bridges)
  • Structural mechanics
  • Signal processing
  • Control engineering
The Catenary

The most famous application of the hyperbolic cosine is the catenary (also called catenoid):

\[y(x) = a \cosh\left(\frac{x}{a}\right)\]

This curve describes the shape of a freely hanging chain or rope under its own weight. It is optimal for suspension bridges and arches, as it distributes tension evenly.


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye