Natural Logarithm of Complex Numbers

Calculation of \(\ln(z)\) - the inverse of the complex exponential function

Logarithm Calculator

Natural Logarithm \(\ln(z)\)

The natural logarithm (base \(e\)) of a complex number is the inverse of the exponential function. The logarithm is multivalued and here the principal value is returned.

Complex number z = a + bi
+
i
Calculation Result
\(\ln(z)\) =
The imaginary part (argument) is given in radians

Logarithm - Properties

Principal Value
\[\ln(z) = \ln|z| + i\arg(z)\]

With \(-\pi < \arg(z) \leq \pi\)

Components
Real part: \(\text{Re}(\ln z) = \ln|z| = \frac{1}{2}\ln(a^2+b^2)\)
Imaginary part: \(\text{Im}(\ln z) = \arg(z) = \arctan\left(\frac{b}{a}\right)\)
Base \(e \approx 2.718\)
Multivalued + 2πik
Multivaluedness

In general: \(\ln(z) = \ln|z| + i(\arg(z) + 2\pi k)\) with \(k \in \mathbb{Z}\)
Infinitely many values!
This calculator returns the principal value (k=0)

Important Properties
  • \(\ln(z_1 \cdot z_2) = \ln(z_1) + \ln(z_2)\) (modulo \(2\pi i\))
  • \(\ln(z_1 / z_2) = \ln(z_1) - \ln(z_2)\) (modulo \(2\pi i\))
  • \(\ln(z^n) = n\ln(z)\) (modulo \(2\pi i\))
  • \(e^{\ln(z)} = z\) (unique)
Inverse Function

\(\ln(z)\) is the inverse of \(e^z\):
If \(w = e^z\), then \(z = \ln(w)\)

Formulas for the Natural Logarithm

The natural logarithm of a complex number \(z = a + bi\) is computed by:

Standard formula
\[\ln(z) = \ln|z| + i\arg(z)\]

With \(|z| = \sqrt{a^2+b^2}\) and \(\arg(z) = \arctan(b/a)\)

Component form
\[\ln(z) = \frac{1}{2}\ln(a^2+b^2) + i\arctan\left(\frac{b}{a}\right)\]

Direct computation from real and imaginary parts

Calculation Example

Calculation: \(\ln(3 + 5i)\)
Step 1: Given

\(z = 3 + 5i\)

Real part: \(a = 3\)

Imaginary part: \(b = 5\)

Step 2: Real part

\(\text{Re}(\ln z) = \frac{1}{2}\ln(a^2+b^2)\)

\(= \frac{1}{2}\ln(3^2 + 5^2)\)

\(= \frac{1}{2}\ln(9 + 25)\)

\(= \frac{1}{2}\ln(34)\)

\(\approx 1.763\)

Step 3: Imaginary part

\(\text{Im}(\ln z) = \arctan\left(\frac{b}{a}\right)\)

\(= \arctan\left(\frac{5}{3}\right)\)

\(\approx 1.030\) rad

(≈ 59.04°)

Step 4: Result

\[\ln(3 + 5i) = 1.763 + 1.030i\]

The imaginary part is given in radians

Verification

Check with exponential:
\(e^{1.763+1.030i} = e^{1.763} \cdot e^{1.030i}\)
\(= 5.831 \cdot (\cos 1.030 + i\sin 1.030)\)
\(= 5.831 \cdot (0.515 + 0.857i)\)
\(\approx 3.0 + 5.0i\) ✓

Alternative computation:
\(|z| = \sqrt{3^2+5^2} = \sqrt{34} \approx 5.831\)
\(\ln|z| = \ln(5.831) \approx 1.763\) ✓
\(\arg(z) = \arctan(5/3) \approx 1.030\) ✓

Multivalued Nature of the Complex Logarithm

Problem: Infinitely many values

The complex logarithm is not unique!

\[\ln(z) = \ln|z| + i(\arg(z) + 2\pi k)\]

with \(k \in \mathbb{Z}\) (any integer)
Reason: The exponential function is periodic: \(e^{z+2\pi i} = e^z\)

Example: \(\ln(1)\)

Possible values:

  • \(k=0\): \(\ln(1) = 0\) (principal value)
  • \(k=1\): \(\ln(1) = 2\pi i\)
  • \(k=-1\): \(\ln(1) = -2\pi i\)
  • \(k=2\): \(\ln(1) = 4\pi i\)
  • etc. (infinitely many!)
Solution: Principal Value

To obtain uniqueness, define the principal value:

\[\text{Log}(z) = \ln|z| + i\arg(z)\]

with \(-\pi < \arg(z) \leq \pi\) (principal branch)
This corresponds to k=0 in the general formula

Branch Cut

The principal value has a branch cut along the negative real axis. When crossing it the imaginary part jumps by \(2\pi\).

Note: For negative real numbers the imaginary part is \(\pm\pi\) (depending on convention)

Graphical representation of multivaluedness
\(z = 1\)
Principal: \(0\)
Others: \(2\pi k i\)
\(z = -1\)
Principal: \(\pi i\)
Others: \(\pi i + 2\pi k i\)
\(z = i\)
Principal: \(\frac{\pi}{2}i\)
Others: \(\frac{\pi}{2}i + 2\pi k i\)

Natural Logarithm - Detailed Description

Inverse of the Exponential Function

The natural logarithm \(\ln(z)\) is the inverse of the complex exponential function \(e^z\).

Inverse relationship:
• If \(w = e^z\), then \(z = \ln(w)\)
• It holds: \(e^{\ln(z)} = z\) (unique)
• But: \(\ln(e^z) = z + 2\pi ik\) (multivalued!)
• Principal value: \(\ln(e^z) = z\) for \(\text{Im}(z) \in (-\pi, \pi]\)

Computation using Polar Form

If \(z = r e^{i\phi}\) in polar form, then:

\[\ln(r e^{i\phi}) = \ln(r) + i\phi\]

With \(r = |z|\) and \(\phi = \arg(z)\)

Practical Applications

The complex logarithm finds applications in many areas:

Applications:
Complex analysis: conformal mappings
Electrical engineering: Bode diagrams, filter design
Signal processing: spectral analysis
Physics: quantum mechanics, fluid dynamics

Computation rules

Be careful with computation rules!

The familiar logarithm rules only hold modulo \(2\pi i\):
• \(\ln(z_1 \cdot z_2) = \ln(z_1) + \ln(z_2) + 2\pi ik\)
• \(\ln(z^n) = n\ln(z) + 2\pi ik\)
• The principal value satisfies the rules only approximately!

Special cases

  • Positive real numbers: \(\ln(a) = \ln(a) + 0i\) (as real)
  • Negative real numbers: \(\ln(-a) = \ln(a) + \pi i\)
  • Imaginary unit: \(\ln(i) = \frac{\pi}{2}i\)
  • One: \(\ln(1) = 0\) (principal value)

More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye