Reciprocal (Inverse) of Complex Numbers

Calculation of \(\frac{1}{z}\) - the multiplicative inverse

Reciprocal Calculator

Reciprocal (Inverse)

The reciprocal \(\frac{1}{z}\) of a complex number is the multiplicative inverse: \(z \cdot \frac{1}{z} = 1\). It is calculated by multiplying with the conjugate number.

Complex number z = a + bi
+
i
Calculation Result
\(\frac{1}{z}\) =

Reciprocal - Properties

Formula
\[\frac{1}{z} = \frac{\overline{z}}{|z|^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\]

Multiply by the conjugate number

Component form
\[\text{Re}\left(\frac{1}{z}\right) = \frac{a}{a^2+b^2}\] \[\text{Im}\left(\frac{1}{z}\right) = -\frac{b}{a^2+b^2}\]
Denominator \(|z|^2 = a^2+b^2\)
Numerator \(\overline{z} = a-bi\)
Important Properties
  • \(z \cdot \frac{1}{z} = 1\) (definition)
  • \(\frac{1}{z} = z^{-1}\) (power notation)
  • \(\frac{1}{\frac{1}{z}} = z\) (involution)
  • \(\left|\frac{1}{z}\right| = \frac{1}{|z|}\) (magnitude)
Not defined for z = 0

The reciprocal is only defined for \(z \neq 0\). Division by zero is not possible!

With Polar Form

For \(z = re^{i\phi}\):
\[\frac{1}{z} = \frac{1}{r}e^{-i\phi}\] Rule: invert magnitude, negate angle

Formula for Calculating the Reciprocal

The reciprocal (inverse) of a complex number \(z = a + bi\) is calculated by multiplying with the conjugate number.

Derivation
\[\frac{1}{z} = \frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi}\] \[= \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2}\]

Multiplying by the conjugate makes the denominator real

Final Formula
\[\frac{1}{z} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\]

Divide real and imaginary parts by \(|z|^2 = a^2+b^2\)

Step-by-Step Example

Calculation: \(\frac{1}{3+5i}\)
Step 1: Multiply by conjugate

\(\frac{1}{3+5i} = \frac{1}{3+5i} \cdot \frac{3-5i}{3-5i}\)

Conjugate of \(3+5i\) is \(3-5i\)

Step 2: Numerator

Numerator: \(1 \cdot (3-5i) = 3-5i\)

Step 3: Denominator

\((3+5i)(3-5i) = 9 - 25i^2\)

\(= 9 - 25(-1) = 9 + 25 = 34\)

Step 4: Division

\(\frac{3-5i}{34} = \frac{3}{34} - \frac{5}{34}i\)

Step 5: Decimal value

\(\frac{3}{34} \approx 0.088\)

\(\frac{5}{34} \approx 0.147\)

\(\frac{1}{3+5i} \approx 0.088 - 0.147i\)

Verification

Check: \((3+5i)(0.088-0.147i)\)
\(= 0.264 - 0.441i + 0.440i - 0.735i^2\)
\(= 0.264 - 0.001i + 0.735\)
\(\approx 1.0\) ✓

Alternative calculation with formula
Real part:
\[\frac{a}{a^2+b^2} = \frac{3}{3^2+5^2} = \frac{3}{34} \approx 0.088\]
Imaginary part:
\[-\frac{b}{a^2+b^2} = -\frac{5}{34} \approx -0.147\]

More Examples

Example 1: \(\frac{1}{i}\)

\(\frac{1}{i} = \frac{1}{i} \cdot \frac{-i}{-i}\)

\(= \frac{-i}{-i^2} = \frac{-i}{1}\)

\(= -i\)

Example 2: \(\frac{1}{1+i}\)

\(\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)}\)

\(= \frac{1-i}{1-i^2} = \frac{1-i}{2}\)

\(= 0.5 - 0.5i\)

Example 3: \(\frac{1}{2}\) (real)

\(\frac{1}{2+0i} = \frac{2}{2^2+0^2}\)

\(= \frac{2}{4}\)

\(= 0.5 + 0i\)

Example 4: With polar form

For \(z = 2e^{i\pi/3}\) (magnitude 2, angle 60°):

\(\frac{1}{z} = \frac{1}{2}e^{-i\pi/3}\)

Magnitude: 0.5, Angle: -60°

Example 5: \(\frac{1}{3-4i}\)

\(|3-4i|^2 = 9 + 16 = 25\)

\(\frac{1}{3-4i} = \frac{3+4i}{25}\)

\(= 0.12 + 0.16i\)

Reciprocal of Complex Numbers - Detailed Description

Multiplicative Inverse

The reciprocal \(\frac{1}{z}\) is the multiplicative inverse of the complex number \(z\).

Definition:
\(z \cdot \frac{1}{z} = 1\) for all \(z \neq 0\)

Notation:
\(\frac{1}{z} = z^{-1}\) (power notation)

Calculation

The trick is to multiply by the conjugate number:

\[\frac{1}{a+bi} = \frac{1}{a+bi} \cdot \frac{a-bi}{a-bi} = \frac{a-bi}{a^2+b^2}\]

The denominator becomes real: \((a+bi)(a-bi) = a^2+b^2 = |z|^2\)

With Polar Form (easier!)

In polar form, the reciprocal is especially easy to calculate:

For \(z = re^{i\phi}\):
\[\frac{1}{z} = \frac{1}{r}e^{-i\phi}\] Rule:
• Magnitude: \(\frac{1}{r}\) (invert)
• Angle: \(-\phi\) (negate)

Practical Applications

Uses:
Division: \(\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}\)
Electrical engineering: impedance calculations
Control engineering: feedback systems
Geometry: inversion at the unit circle

Important Properties

  • \(\left|\frac{1}{z}\right| = \frac{1}{|z|}\) (magnitude inverts)
  • \(\arg\left(\frac{1}{z}\right) = -\arg(z)\) (angle negates)
  • \(\overline{\frac{1}{z}} = \frac{1}{\overline{z}}\) (conjugation commutes)
  • \(\frac{1}{\frac{1}{z}} = z\) (involution)

More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye