Hyperbolic Sine (sinh) for Complex Numbers
Calculation of sinh(z) - hyperbolic function in the complex plane
Sinh Calculator
Hyperbolic Sine
The hyperbolic sine sinh(z) of a complex number z = x + yi combines hyperbolic and trigonometric functions. It grows exponentially and is closely related to the exponential function: \(\sinh(z) = \frac{e^z - e^{-z}}{2}\)
Sinh - Properties
Formula for Complex Numbers
With z = x + yi
Exponential Representation
Half-difference of exponential functions
Important Properties
- Odd function: sinh(-z) = -sinh(z)
- \(\cosh^2(z) - \sinh^2(z) = 1\)
- Zero: sinh(0) = 0
- Grows exponentially for |z| → ∞
Relations
- \(\sinh(iz) = i\sin(z)\)
- \(\sinh(2z) = 2\sinh(z)\cosh(z)\)
- \(\sinh(z \pm w) = \sinh z \cosh w \pm \cosh z \sinh w\)
- \(\frac{d}{dz}\sinh(z) = \cosh(z)\)
Formulas for Hyperbolic Sine of Complex Numbers
The hyperbolic sine sinh(z) of a complex number z = x + yi combines hyperbolic functions (sinh, cosh) with trigonometric functions (cos, sin).
Cartesian Form
Real part: \(\sinh(x)\cos(y)\)
Imaginary part: \(\cosh(x)\sin(y)\)
Exponential Form
Half-difference of exponential functions
Step-by-Step Example
Calculation: sinh(3 + 5i)
Step 1: Apply formula
z = 3 + 5i
x = 3 (real part)
y = 5 (imaginary part)
Step 2: Calculate real part
\(\text{Re} = \sinh(3) \cdot \cos(5)\)
\(= (10.0179) \cdot (0.28366)\)
\(\approx 2.842\)
Step 3: Calculate imaginary part
\(\text{Im} = \cosh(3) \cdot \sin(5)\)
\(= (10.0677) \cdot (-0.95892)\)
\(\approx -9.654\)
Step 4: Result
\(\sinh(3 + 5i) = \text{Re} + i\text{Im}\)
\(\approx 2.842 - 9.654i\)
Observation
The magnitude \(|\sinh(3 + 5i)| \approx 10.06\) shows the exponential growth. The hyperbolic sine grows exponentially with the real part x.
More Examples
Example 1: sinh(0)
z = 0
\(\sinh(0) = \frac{e^0 - e^{-0}}{2}\)
\(= \frac{1 - 1}{2} = 0\)
Example 2: sinh(1)
z = 1 (real)
\(\sinh(1) = \frac{e - e^{-1}}{2}\)
\(\approx 1.175\)
Example 3: sinh(i)
z = i (purely imaginary)
\(\sinh(i) = i\sin(1)\)
\(\approx 0.841i\)
Example 4: sinh(πi/2)
z = πi/2
\(\sinh(\pi i/2) = i\sin(\pi/2)\)
\(= i\)
Example 5: sinh(2 + i)
z = 2 + i
\(\text{Re} = \sinh(2)\cos(1) \approx 1.978\)
\(\text{Im} = \cosh(2)\sin(1) \approx 3.166\)
\(\approx 1.978 + 3.166i\)
Example 6: sinh(-2)
z = -2 (real, negative)
\(\sinh(-2) = -\sinh(2)\) (odd!)
\(\approx -3.627\)
Hyperbolic Sine - Detailed Description
Definition
The hyperbolic sine is one of the hyperbolic functions, analogous to the trigonometric sine.
\[\sinh(z) = \frac{e^z - e^{-z}}{2}\]
For real numbers:
\[\sinh(x) = \frac{e^x - e^{-x}}{2}\]
Range: (-∞, ∞)
Zero at x = 0: sinh(0) = 0
For Complex Numbers
Calculation with z = x + yi:
• Real part: \(\sinh(x)\cos(y)\)
• Imaginary part: \(\cosh(x)\sin(y)\)
• Grows exponentially with |Re(z)|
Important Properties
- Odd function: \(\sinh(-z) = -\sinh(z)\)
- Hyperbolic identity: \(\cosh^2(z) - \sinh^2(z) = 1\)
- Zero: sinh(0) = 0
- Derivative: \(\frac{d}{dz}\sinh(z) = \cosh(z)\
Addition Formulas
\[\sinh(z \pm w) = \sinh z \cosh w \pm \cosh z \sinh w\]
Double argument:
\[\sinh(2z) = 2\sinh(z)\cosh(z)\]
Relation to Trigonometric Functions
• \(\sinh(iz) = i\sin(z)\) (important connection!)
• \(\sin(iz) = i\sinh(z)\) (inverse)
• \(e^z = \cosh(z) + \sinh(z)\)
• \(e^{-z} = \cosh(z) - \sinh(z)\)
Behavior and Growth
Exponential Growth
For large |x|:
The hyperbolic sine grows exponentially!
e.g.: sinh(5) ≈ 74.2, sinh(10) ≈ 11013.2
Zero Point
For real numbers:
The only real zero!
sinh is strictly monotonically increasing
Applications
Mathematics
- Hyperbolic geometry
- Differential equations
- Integral calculus
- Complex analysis
Physics
- Relativity theory
- Heat equation
- Wave equations
- Electromagnetism
Engineering
- Structural mechanics
- Signal processing
- Control engineering
- Vibration analysis
Comparison: sinh vs. sin
- Odd function: sinh(-x) = -sinh(x)
- Not periodic
- Exponential growth
- Range: (-∞, ∞)
- Odd function: sin(-x) = -sin(x)
- Periodic: Period 2π
- Oscillating
- Range: [-1, 1]
Connection: \(\sinh(iz) = i\sin(z)\) and \(\sin(iz) = i\sinh(z)\)
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •