Calculate Bessel-K Function

Online calculator for the modified Bessel function Kᵥ(z) of the second kind - Exponentially decaying solutions for physical systems

Bessel-K Function Calculator

Modified Bessel Function of the Second Kind

The Kᵥ(z) or modified Bessel function of the second kind shows exponentially decaying behavior and describes damped processes.

Order number (integer)
Function argument (z > 0)
Result
Kᵥ(z):

Bessel-K Function Curve

Mouse pointer on the graph shows the values.
The K-function shows exponentially decaying behavior for large z.

Why exponentially decaying behavior?

The modified Bessel function of the second kind differs fundamentally from the first kind:

  • Exponential decay: Kᵥ(z) → 0 for z → ∞
  • Singularity at z=0: Kᵥ(0) → ∞
  • Physical damping: Describes diffusion and heat loss
  • Complementary function: Partner to Iᵥ(z)
  • Boundary value problems: Important for infinite domains
  • Asymptotics: Kᵥ(z) ~ √(π/2z) e^(-z)

Physical applications of the Bessel-K function

The Bessel-K function is indispensable for damping and diffusion processes:

Heat Conduction
  • Heat dissipation in infinite domains
  • Steady-state temperature distributions
  • Heat sinks and heat exchangers
Diffusion Processes
  • Concentration gradients
  • Mass transport in materials
  • Porous media and filtration

Formulas for the Bessel-K Function

Definition
\[K_\nu(z) = \frac{\pi}{2} \frac{I_{-\nu}(z) - I_\nu(z)}{\sin(\nu \pi)}\]

Definition via modified Bessel functions of the first kind

For integer ν
\[K_n(z) = \lim_{\nu \to n} K_\nu(z)\]

Limit definition for integer orders

Integral Representation
\[K_\nu(z) = \int_0^\infty e^{-z \cosh t} \cosh(\nu t) dt\]

Integral form for Re(z) > 0

Asymptotic Form
\[K_\nu(z) \sim \sqrt{\frac{\pi}{2z}} e^{-z} \left(1 + \frac{4\nu^2-1}{8z} + \ldots\right)\]

For large z (exponential decay)

Recurrence Formula
\[\frac{2\nu}{z} K_\nu(z) = K_{\nu-1}(z) - K_{\nu+1}(z)\]

Recurrence for adjacent orders

Symmetry Property
\[K_{-\nu}(z) = K_\nu(z)\]

Symmetry with respect to order

Behavior as z → 0
\[K_\nu(z) \sim \frac{\Gamma(|\nu|)}{2} \left(\frac{2}{z}\right)^{|\nu|}\]

Singularity at origin

Special Values

Important Values
K₀(1) ≈ 0.421 K₁(1) ≈ 0.602 K₀(2) ≈ 0.114
Symmetry Properties
K_{-ν}(z) = K_ν(z)

For all reellen ν

Singularity at z = 0
\[\lim_{z \to 0^+} K_\nu(z) = +\infty\]

For all ν ≥ 0

Behavior as z → ∞
\[\lim_{z \to \infty} K_\nu(z) = 0\]

Exponential decay

Application Areas

Heat conduction, diffusion, electromagnetic shielding, quantum field theory.

Bessel-K Decay Behavior

Bessel-K Functions
Bessel-K Functions (Order 0,1,2)

The K-functions show characteristic exponential decay with singularities at z = 0 and different decay rates depending on order.

Characteristic Properties
  • Kᵥ(z) → ∞ for z → 0⁺
  • Kᵥ(z) → 0 for z → ∞
  • Asymptotically: ~ √(π/2z) e^(-z)
  • Monotonically decreasing for all z > 0

Detailed Description of the Bessel-K Function

Mathematical Definition

The modified Bessel function of the second kind Kᵥ(z) is the second linearly independent solution of the modified Bessel differential equation. Unlike Iᵥ(z), it shows exponentially decaying behavior and is singular at z = 0.

Fundamental Property: Kᵥ(z) → 0 for z → ∞ (exponential decay)
Using the Calculator

Enter the order ν (integer) and the argument z (positive real number). The K-function is only defined for z > 0 due to the singularity at z = 0.

Physical Background

The Bessel-K functions describe damping and decay processes in cylindrical geometries. They are particularly important for problems with infinite boundary conditions, where physical quantities must vanish at infinity.

Properties and Applications

Physical Applications
  • Heat conduction in infinite cylindrical media
  • Diffusion processes with boundary conditions at infinity
  • Electromagnetic shielding and skin effect
  • Quantum field theory and particle physics
Mathematical Properties
  • Exponential decay for large z
  • Singularity at z = 0
  • Symmetry: K₋ᵥ(z) = Kᵥ(z)
  • Monotonically decreasing for all z > 0
Numerical Aspects
  • Stability: Numerically challenging for small z
  • Algorithms: Special methods for different z ranges
  • Accuracy: High precision for large z
  • Efficiency: Recurrence formulas for adjacent orders
Interesting Facts
  • K₀(z) is important for logarithmic potentials in 2D
  • K₁(z) appears in relativity theory for thermal equilibria
  • K-functions are essential for Green's functions in physics
  • They describe the behavior of fields at large distances

Calculation Examples and Decay Behavior

Small Argument

z = 0.5:

K₀(0.5) ≈ 0.924

K₁(0.5) ≈ 1.656

Medium Argument

z = 2:

K₀(2) ≈ 0.114

K₁(2) ≈ 0.140

Large Argument

z = 10:

K₀(10) ≈ 1.78×10⁻⁵

Strong exponential decay

Detailed Physical Applications

Heat Conduction

Steady-state heat conduction:

T(r) = A K₀(r/λ) for cylindrical heat source

λ is the characteristic length

Example: Heat sink with exponentially decaying temperature.

Electromagnetism

Skin effect:

E(r) ∝ K₀(r/δ) in conductive medium

δ is the skin depth

Example: Electromagnetic shielding and penetration depth.

Mathematical Properties and Relations

Asymptotic Behavior

For large z:

Kᵥ(z) ~ √(π/2z) e^(-z)

For small z (ν > 0):

Kᵥ(z) ~ Γ(ν)/2 (2/z)^ν

Special case: K₀(z) ~ -ln(z) for small z.

Relations to Other Functions

Wronskian determinant:

W[Iᵥ, Kᵥ] = -1/z

Relation to Hankel functions:

Kᵥ(z) = (π/2)i^(ν+1) H^(1)_ν(iz)

Significance: Fundamental solution system with Iᵥ(z).

Special Orders and Limiting Cases

Order ν = 0

K₀(z) - Fundamental solution:

\[K_0(z) = \int_0^\infty e^{-z \cosh t} dt\]

Logarithmic singularity at z = 0

Application: 2D problems, logarithmic potentials.

Order ν = 1

K₁(z) - Derivative of K₀:

\[K_1(z) = -\frac{d}{dz} K_0(z)\]

Important for gradient problems

Application: Diffusion fluxes, thermal gradients.

Numerical Computation and Algorithms

Computation Methods
  • Series Expansion: For small z (with care at singularity)
  • Asymptotic Expansion: For large z ≥ 15
  • Recurrence Relations: For adjacent orders
  • Continued Fractions: For medium z ranges
Software Implementations
  • GNU GSL: High-precision K-functions
  • Boost Math: C++ template library
  • SciPy: Python scipy.special.kv
  • MATLAB: Built-in besselk function

Ist diese Seite hilfreich?            
Vielen Dank für Ihr Feedback!

Das tut uns leid

Wie können wir die Seite verbessern?


More special functions

AiryDerivative AiryBessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-YeSpherical-Bessel-J Spherical-Bessel-YHankelBetaIncomplete BetaIncomplete Inverse BetaBinomial CoefficientBinomial Coefficient LogarithmErfErfcErfiErfciFibonacciFibonacci TabelleGammaInverse GammaLog GammaDigammaTrigammaLogitSigmoidDerivative SigmoidSoftsignDerivative SoftsignSoftmaxStruveStruve tableModified StruveModified Struve tableRiemann Zeta