Cosine (cos) for Complex Numbers

Calculation of cos(z) - trigonometric function in the complex plane

Cosine Calculator

Cosine of Complex Numbers

The cosine cos(z) of a complex number z = x + yi is calculated using real and hyperbolic functions. It is a periodic function with period 2π and can take arbitrarily large values (not bounded to [-1, 1]).

Angle z = x + yi (radians)
+
Imaginary part (y)
i
Calculation Result
cos(z) =
For purely real numbers: |cos(x)| ≤ 1, for complex numbers |cos(z)| can be > 1!

Cosine - Properties

Formula for Complex Numbers
\[\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)\]

With z = x + yi

Euler's Formula
\[\cos(z) = \frac{e^{iz} + e^{-iz}}{2}\]
Period
Even function cos(-z) = cos(z)
Important Properties
  • Periodic with period 2π
  • Even function: cos(-z) = cos(z)
  • \(\cos^2(z) + \sin^2(z) = 1\) (Pythagorean identity)
  • Not bounded for complex z
Relations
  • \(\cos(z) = \sin(z + \pi/2)\)
  • \(\cos(2z) = \cos^2(z) - \sin^2(z)\)
  • \(\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w\)
  • \(\cosh(iz) = \cos(z)\)


Formulas for Cosine of Complex Numbers

The cosine cos(z) of a complex number z = x + yi is calculated using a combination of trigonometric and hyperbolic functions.

Cartesian Form
\[\cos(x + yi) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)\]

Real part: \(\cos(x)\cosh(y)\)
Imaginary part: \(-\sin(x)\sinh(y)\)

Euler's Formula
\[\cos(z) = \frac{e^{iz} + e^{-iz}}{2}\]

Exponential representation

Step-by-Step Example

Calculation: cos(3 + 5i)
Step 1: Apply formula

z = 3 + 5i

x = 3 (real part)

y = 5 (imaginary part)

Step 2: Calculate real part

\(\text{Re} = \cos(3) \cdot \cosh(5)\)

\(= (-0.98999) \cdot (74.20995)\)

\(\approx -73.47\)

Step 3: Calculate imaginary part

\(\text{Im} = -\sin(3) \cdot \sinh(5)\)

\(= -(0.14112) \cdot (74.20321)\)

\(\approx -10.47\)

Step 4: Result

\(\cos(3 + 5i) = \text{Re} + i\text{Im}\)

\(\approx -73.47 - 10.47i\)

Observation

The magnitude \(|\cos(3 + 5i)| \approx 74.21\) is much greater than 1! This is typical for complex arguments with large imaginary parts, as cosh(y) and sinh(y) grow exponentially.

More Examples

Example 1: cos(0)

z = 0

\(\cos(0) = \cos(0)\cosh(0)\)

\(= 1 \cdot 1 = 1\)

Example 2: cos(π)

z = π ≈ 3.1416

\(\cos(\pi) = \cos(\pi)\cosh(0)\)

\(= -1 \cdot 1 = -1\)

Example 3: cos(i)

z = i (purely imaginary)

\(\cos(i) = \cos(0)\cosh(1)\)

\(= 1 \cdot \cosh(1) \approx 1.543\)

Example 4: cos(π/2)

z = π/2 ≈ 1.5708

\(\cos(\pi/2) = \cos(\pi/2)\cosh(0)\)

\(\approx 0\)

Example 5: cos(1 + i)

z = 1 + i

\(\text{Re} = \cos(1)\cosh(1) \approx 0.833\)
\(\text{Im} = -\sin(1)\sinh(1) \approx -0.989\)

\(\approx 0.833 - 0.989i\)

Example 6: cos(2i)

z = 2i (purely imaginary)

\(\cos(2i) = \cosh(2)\)

\(\approx 3.762\)

Cosine - Detailed Description

Definition

The cosine is one of the fundamental trigonometric functions.

For real numbers:
In a right triangle:
\[\cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\]

Range: [-1, 1]
Period:

For Complex Numbers

Calculation with z = x + yi:

\[\cos(z) = \cos(x)\cosh(y) - i\sin(x)\sinh(y)\]

• Real part: \(\cos(x)\cosh(y)\)
• Imaginary part: \(-\sin(x)\sinh(y)\)
Not bounded! Can become arbitrarily large

Important Properties

  • Periodicity: \(\cos(z + 2\pi) = \cos(z)\)
  • Even function: \(\cos(-z) = \cos(z)\)
  • Pythagorean identity: \(\cos^2(z) + \sin^2(z) = 1\)
  • Derivative: \(\frac{d}{dz}\cos(z) = -\sin(z)\)

Addition Formulas

Sum formula:
\[\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w\]
Double angle:
\[\cos(2z) = \cos^2(z) - \sin^2(z)\]
\[= 2\cos^2(z) - 1 = 1 - 2\sin^2(z)\]

Relations to Other Functions

• \(\cos(z) = \sin(z + \pi/2)\) (phase shift)
• \(\cosh(iz) = \cos(z)\) (hyperbolic ↔ trigonometric)
• \(\cos(iz) = \cosh(z)\) (inverse)
• \(e^{iz} = \cos(z) + i\sin(z)\) (Euler's formula)

Applications

Physics
  • Oscillations and waves
  • Alternating current
  • Fourier analysis
  • Quantum mechanics
Geometry
  • Angle calculation
  • Rotations
  • Polar coordinates
  • Vector projection
Signal Processing
  • Fourier transformation
  • Filter design
  • Modulation
  • Spectral analysis
Important Difference: Real vs. Complex
Real arguments (x ∈ ℝ):
  • Bounded: -1 ≤ cos(x) ≤ 1
  • Periodic with period 2π
  • Even function
Complex arguments (z ∈ ℂ):
  • Not bounded! |cos(z)| can become arbitrarily large
  • Periodic with period 2π
  • Even function
Is this page helpful?            
Thank you for your feedback!

Sorry about that

How can we improve it?


More complex functions

Absolute value (abs)AngleConjugateDivisionExponentLogarithm to base 10MultiplicationNatural logarithmPolarformPowerRootReciprocalSquare root
CoshSinhTanh
AcosAsinAtanCosSinTan
Airy functionDerivative Airy function
Bessel-IBessel-IeBessel-JBessel-JeBessel-KBessel-KeBessel-YBessel-Ye