Cosine (cos) for Complex Numbers
Calculation of cos(z) - trigonometric function in the complex plane
Cosine Calculator
Cosine of Complex Numbers
The cosine cos(z) of a complex number z = x + yi is calculated using real and hyperbolic functions. It is a periodic function with period 2π and can take arbitrarily large values (not bounded to [-1, 1]).
Cosine - Properties
Formula for Complex Numbers
With z = x + yi
Euler's Formula
Important Properties
- Periodic with period 2π
- Even function: cos(-z) = cos(z)
- \(\cos^2(z) + \sin^2(z) = 1\) (Pythagorean identity)
- Not bounded for complex z
Relations
- \(\cos(z) = \sin(z + \pi/2)\)
- \(\cos(2z) = \cos^2(z) - \sin^2(z)\)
- \(\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w\)
- \(\cosh(iz) = \cos(z)\)
Formulas for Cosine of Complex Numbers
The cosine cos(z) of a complex number z = x + yi is calculated using a combination of trigonometric and hyperbolic functions.
Cartesian Form
Real part: \(\cos(x)\cosh(y)\)
Imaginary part: \(-\sin(x)\sinh(y)\)
Euler's Formula
Exponential representation
Step-by-Step Example
Calculation: cos(3 + 5i)
Step 1: Apply formula
z = 3 + 5i
x = 3 (real part)
y = 5 (imaginary part)
Step 2: Calculate real part
\(\text{Re} = \cos(3) \cdot \cosh(5)\)
\(= (-0.98999) \cdot (74.20995)\)
\(\approx -73.47\)
Step 3: Calculate imaginary part
\(\text{Im} = -\sin(3) \cdot \sinh(5)\)
\(= -(0.14112) \cdot (74.20321)\)
\(\approx -10.47\)
Step 4: Result
\(\cos(3 + 5i) = \text{Re} + i\text{Im}\)
\(\approx -73.47 - 10.47i\)
Observation
The magnitude \(|\cos(3 + 5i)| \approx 74.21\) is much greater than 1! This is typical for complex arguments with large imaginary parts, as cosh(y) and sinh(y) grow exponentially.
More Examples
Example 1: cos(0)
z = 0
\(\cos(0) = \cos(0)\cosh(0)\)
\(= 1 \cdot 1 = 1\)
Example 2: cos(π)
z = π ≈ 3.1416
\(\cos(\pi) = \cos(\pi)\cosh(0)\)
\(= -1 \cdot 1 = -1\)
Example 3: cos(i)
z = i (purely imaginary)
\(\cos(i) = \cos(0)\cosh(1)\)
\(= 1 \cdot \cosh(1) \approx 1.543\)
Example 4: cos(π/2)
z = π/2 ≈ 1.5708
\(\cos(\pi/2) = \cos(\pi/2)\cosh(0)\)
\(\approx 0\)
Example 5: cos(1 + i)
z = 1 + i
\(\text{Re} = \cos(1)\cosh(1) \approx 0.833\)
\(\text{Im} = -\sin(1)\sinh(1) \approx -0.989\)
\(\approx 0.833 - 0.989i\)
Example 6: cos(2i)
z = 2i (purely imaginary)
\(\cos(2i) = \cosh(2)\)
\(\approx 3.762\)
Cosine - Detailed Description
Definition
The cosine is one of the fundamental trigonometric functions.
In a right triangle:
\[\cos(\alpha) = \frac{\text{Adjacent}}{\text{Hypotenuse}}\]
Range: [-1, 1]
Period: 2π
For Complex Numbers
Calculation with z = x + yi:
• Real part: \(\cos(x)\cosh(y)\)
• Imaginary part: \(-\sin(x)\sinh(y)\)
• Not bounded! Can become arbitrarily large
Important Properties
- Periodicity: \(\cos(z + 2\pi) = \cos(z)\)
- Even function: \(\cos(-z) = \cos(z)\)
- Pythagorean identity: \(\cos^2(z) + \sin^2(z) = 1\)
- Derivative: \(\frac{d}{dz}\cos(z) = -\sin(z)\)
Addition Formulas
\[\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w\]
Double angle:
\[\cos(2z) = \cos^2(z) - \sin^2(z)\]
\[= 2\cos^2(z) - 1 = 1 - 2\sin^2(z)\]
Relations to Other Functions
• \(\cos(z) = \sin(z + \pi/2)\) (phase shift)
• \(\cosh(iz) = \cos(z)\) (hyperbolic ↔ trigonometric)
• \(\cos(iz) = \cosh(z)\) (inverse)
• \(e^{iz} = \cos(z) + i\sin(z)\) (Euler's formula)
Applications
Physics
- Oscillations and waves
- Alternating current
- Fourier analysis
- Quantum mechanics
Geometry
- Angle calculation
- Rotations
- Polar coordinates
- Vector projection
Signal Processing
- Fourier transformation
- Filter design
- Modulation
- Spectral analysis
Important Difference: Real vs. Complex
- Bounded: -1 ≤ cos(x) ≤ 1
- Periodic with period 2π
- Even function
- Not bounded! |cos(z)| can become arbitrarily large
- Periodic with period 2π
- Even function
|
More complex functions
Absolute value (abs) • Angle • Conjugate • Division • Exponent • Logarithm to base 10 • Multiplication • Natural logarithm • Polarform • Power • Root • Reciprocal • Square root •Cosh • Sinh • Tanh •
Acos • Asin • Atan • Cos • Sin • Tan •
Airy function • Derivative Airy function •
Bessel-I • Bessel-Ie • Bessel-J • Bessel-Je • Bessel-K • Bessel-Ke • Bessel-Y • Bessel-Ye •